Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Int J Mol Sci ; 22(24)2021 Dec 15.
Article in English | MEDLINE | ID: covidwho-1572496

ABSTRACT

In humans, over-activation of innate immunity in response to viral or bacterial infections often causes severe illness and death. Furthermore, similar mechanisms related to innate immunity can cause pathogenesis and death in sepsis, massive trauma (including surgery and burns), ischemia/reperfusion, some toxic lesions, and viral infections including COVID-19. Based on the reviewed observations, we suggest that such severe outcomes may be manifestations of a controlled suicidal strategy protecting the entire population from the spread of pathogens and from dangerous pathologies rather than an aberrant hyperstimulation of defense responses. We argue that innate immunity may be involved in the implementation of an altruistic programmed death of an organism aimed at increasing the well-being of the whole community. We discuss possible ways to suppress this atavistic program by interfering with innate immunity and suggest that combating this program should be a major goal of future medicine.


Subject(s)
Altruism , Apoptosis/immunology , Immunity, Innate/immunology , Animals , COVID-19/immunology , Cell Death/immunology , Cytokine Release Syndrome/immunology , Cytokine Release Syndrome/mortality , Humans , Inflammasomes/immunology , Inflammation/immunology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity , Signal Transduction/immunology
2.
Clin Transl Sci ; 14(6): 2348-2359, 2021 11.
Article in English | MEDLINE | ID: covidwho-1526356

ABSTRACT

Coronavirus disease 2019 (COVID-19) global pandemic is caused by severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2) viral infection, which can lead to pneumonia, lung injury, and death in susceptible populations. Understanding viral dynamics of SARS-CoV-2 is critical for development of effective treatments. An Immune-Viral Dynamics Model (IVDM) is developed to describe SARS-CoV-2 viral dynamics and COVID-19 disease progression. A dataset of 60 individual patients with COVID-19 with clinical viral load (VL) and reported disease severity were assembled from literature. Viral infection and replication mechanisms of SARS-CoV-2, viral-induced cell death, and time-dependent immune response are incorporated in the model to describe the dynamics of viruses and immune response. Disease severity are tested as a covariate to model parameters. The IVDM was fitted to the data and parameters were estimated using the nonlinear mixed-effect model. The model can adequately describe individual viral dynamics profiles, with disease severity identified as a covariate on infected cell death rate. The modeling suggested that it takes about 32.6 days to reach 50% of maximum cell-based immunity. Simulations based on virtual populations suggested a typical mild case reaches VL limit of detection (LOD) by 13 days with no treatment, a moderate case by 17 days, and a severe case by 41 days. Simulations were used to explore hypothetical treatments with different initiation time, disease severity, and drug effects to demonstrate the usefulness of such modeling in informing decisions. Overall, the IVDM modeling and simulation platform enables simulations for viral dynamics and treatment efficacy and can be used to aid in clinical pharmacokinetic/pharmacodynamic (PK/PD) and dose-efficacy response analysis for COVID-19 drug development.


Subject(s)
Antiviral Agents/pharmacology , COVID-19 Drug Treatment , Drug Development/methods , Host Microbial Interactions/immunology , Models, Biological , Antiviral Agents/therapeutic use , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Cell Death/drug effects , Cell Death/immunology , Datasets as Topic , Dose-Response Relationship, Drug , Host Microbial Interactions/drug effects , Humans , Nonlinear Dynamics , SARS-CoV-2/drug effects , SARS-CoV-2/immunology , Severity of Illness Index , Treatment Outcome , Viral Load
3.
J Clin Invest ; 131(20)2021 10 15.
Article in English | MEDLINE | ID: covidwho-1470547

ABSTRACT

BACKGROUNDMultisystem inflammatory syndrome in children (MIS-C) is a rare but potentially severe illness that follows exposure to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Kawasaki disease (KD) shares several clinical features with MIS-C, which prompted the use of intravenous immunoglobulin (IVIG), a mainstay therapy for KD. Both diseases share a robust activation of the innate immune system, including the IL-1 signaling pathway, and IL-1 blockade has been used for the treatment of both MIS-C and KD. The mechanism of action of IVIG in these 2 diseases and the cellular source of IL-1ß have not been defined.METHODSThe effects of IVIG on peripheral blood leukocyte populations from patients with MIS-C and KD were examined using flow cytometry and mass cytometry (CyTOF) and live-cell imaging.RESULTSCirculating neutrophils were highly activated in patients with KD and MIS-C and were a major source of IL-1ß. Following IVIG treatment, activated IL-1ß+ neutrophils were reduced in the circulation. In vitro, IVIG was a potent activator of neutrophil cell death via PI3K and NADPH oxidase, but independently of caspase activation.CONCLUSIONSActivated neutrophils expressing IL-1ß can be targeted by IVIG, supporting its use in both KD and MIS-C to ameliorate inflammation.FUNDINGPatient Centered Outcomes Research Institute; NIH; American Asthma Foundation; American Heart Association; Novo Nordisk Foundation; NIGMS; American Academy of Allergy, Asthma and Immunology Foundation.


Subject(s)
COVID-19/complications , Immunoglobulins, Intravenous/therapeutic use , Mucocutaneous Lymph Node Syndrome/immunology , Mucocutaneous Lymph Node Syndrome/therapy , Systemic Inflammatory Response Syndrome/immunology , Systemic Inflammatory Response Syndrome/therapy , COVID-19/blood , COVID-19/immunology , COVID-19/therapy , Case-Control Studies , Cell Death/immunology , Cell Lineage/immunology , Child , Child, Preschool , Fas Ligand Protein/immunology , Female , Humans , Infant , Interleukin-1beta/antagonists & inhibitors , Interleukin-1beta/blood , Leukocyte Count , Male , Mucocutaneous Lymph Node Syndrome/blood , Neutrophil Activation , Neutrophils/classification , Neutrophils/immunology , Neutrophils/pathology , Systemic Inflammatory Response Syndrome/blood
4.
Front Immunol ; 12: 631821, 2021.
Article in English | MEDLINE | ID: covidwho-1344260

ABSTRACT

Neutrophils or polymorphonuclear leukocytes (PMN) are key participants in the innate immune response for their ability to execute different effector functions. These cells express a vast array of membrane receptors that allow them to recognize and eliminate infectious agents effectively and respond appropriately to microenvironmental stimuli that regulate neutrophil functions, such as activation, migration, generation of reactive oxygen species, formation of neutrophil extracellular traps, and mediator secretion, among others. Currently, it has been realized that activated neutrophils can accomplish their effector functions and simultaneously activate mechanisms of cell death in response to different intracellular or extracellular factors. Although several studies have revealed similarities between the mechanisms of cell death of neutrophils and other cell types, neutrophils have distinctive properties, such as a high production of reactive oxygen species (ROS) and nitrogen species (RNS), that are important for their effector function in infections and pathologies such as cancer, autoimmune diseases, and immunodeficiencies, influencing their cell death mechanisms. The present work offers a synthesis of the conditions and molecules implicated in the regulation and activation of the processes of neutrophil death: apoptosis, autophagy, pyroptosis, necroptosis, NETosis, and necrosis. This information allows to understand the duality encountered by PMNs upon activation. The effector functions are carried out to eliminate invading pathogens, but in several instances, these functions involve activation of signaling cascades that culminate in the death of the neutrophil. This process guarantees the correct elimination of pathogenic agents, damaged or senescent cells, and the timely resolution of the inflammation that is essential for the maintenance of homeostasis in the organism. In addition, they alert the organism when the immunological system is being deregulated, promoting the activation of other cells of the immune system, such as B and T lymphocytes, which produce cytokines that potentiate the microbicide functions.


Subject(s)
Cell Death/immunology , Neutrophils/pathology , Apoptosis/immunology , Apoptosis Regulatory Proteins/metabolism , Autophagy/immunology , Extracellular Traps/immunology , Extracellular Traps/metabolism , Free Radicals/metabolism , Humans , Necroptosis/immunology , Necrosis/immunology , Necrosis/metabolism , Neutrophil Activation , Neutrophils/immunology , Neutrophils/metabolism , Phagocytosis/immunology , Pyroptosis/immunology , Receptors, Death Domain/metabolism
5.
Front Immunol ; 12: 630430, 2021.
Article in English | MEDLINE | ID: covidwho-1120200

ABSTRACT

C-reactive protein (CRP) is the best-known acute phase protein. In humans, almost every type of inflammation is accompanied by an increase of CRP concentration. Until recently, the only known physiological function of CRP was the marking of cells to initiate their phagocytosis. This triggers the classical complement pathway up to C4, which helps to eliminate pathogens and dead cells. However, vital cells with reduced energy supply are also marked, which is useful in the case of a classical external wound because an important substrate for pathogens is disposed of, but is counterproductive at internal wounds (e.g., heart attack or stroke). This mechanism negatively affects clinical outcomes since it is established that CRP levels correlate with the prognosis of these indications. Here, we summarize what we can learn from a clinical study in which CRP was adsorbed from the bloodstream by CRP-apheresis. Recently, it was shown that CRP can have a direct effect on blood pressure in rabbits. This is interesting in regard to patients with high inflammation, as they often become tachycardic and need catecholamines. These two physiological effects of CRP apparently also occur in COVID-19. Parts of the lung become ischemic due to intra-alveolar edema and hemorrhage and in parallel CRP increases dramatically, hence it is assumed that CRP is also involved in this ischemic condition. It is meanwhile considered that most of the damage in COVID-19 is caused by the immune system. The high amounts of CRP could have an additional influence on blood pressure in severe COVID-19.


Subject(s)
C-Reactive Protein/immunology , COVID-19/immunology , Myocardial Infarction/immunology , SARS-CoV-2/immunology , Stroke/immunology , Animals , Cell Death/immunology , Cell Hypoxia/immunology , Complement C4/immunology , Humans , Rabbits
6.
Int J Mol Sci ; 22(4)2021 Feb 22.
Article in English | MEDLINE | ID: covidwho-1110433

ABSTRACT

By dint of the aging population and further deepened with the Covid-19 pandemic, lung disease has turned out to be a major cause of worldwide morbidity and mortality. The condition is exacerbated when the immune system further attacks the healthy, rather than the diseased, tissue within the lung. Governed by unremittingly proliferating mesenchymal cells and increased collagen deposition, if inflammation persists, as frequently occurs in aging lungs, the tissue develops tumors and/or turns into scars (fibrosis), with limited regenerative capacity and organ failure. Fas ligand (FasL, a ligand of the Fas cell death receptor) is a key factor in the regulation of these processes. FasL is primarily found in two forms: full length (membrane, or mFasL) and cleaved (soluble, or sFasL). We and others found that T-cells expressing the mFasL retain autoimmune surveillance that controls mesenchymal, as well as tumor cell accumulation following an inflammatory response. However, mesenchymal cells from fibrotic lungs, tumor cells, or cells from immune-privileged sites, resist FasL+ T-cell-induced cell death. The mechanisms involved are a counterattack of immune cells by FasL, by releasing a soluble form of FasL that competes with the membrane version, and inhibits their cell death, promoting cell survival. This review focuses on understanding the previously unrecognized role of FasL, and in particular its soluble form, sFasL, in the serum of aged subjects, and its association with the evolution of lung disease, paving the way to new methods of diagnosis and treatment.


Subject(s)
COVID-19/immunology , Fas Ligand Protein/immunology , Lung Diseases/immunology , Lung/immunology , Age Factors , Aged , COVID-19/blood , Cell Death/immunology , Fas Ligand Protein/blood , Humans , Immunity , Lung Diseases/blood , SARS-CoV-2/immunology , SARS-CoV-2/isolation & purification , T-Lymphocytes/immunology
7.
Trends Immunol ; 41(12): 1083-1099, 2020 12.
Article in English | MEDLINE | ID: covidwho-866780

ABSTRACT

The innate immune system acts as the first line of defense against pathogens, including coronaviruses (CoVs). Severe acute respiratory syndrome (SARS)-CoV and Middle East respiratory syndrome (MERS)-CoV are epidemic zoonotic CoVs that emerged at the beginning of the 21st century. The recently emerged virus SARS-CoV-2 is a novel strain of CoV that has caused the coronavirus 2019 (COVID-19) pandemic. Scientific advancements made by studying the SARS-CoV and MERS-CoV outbreaks have provided a foundation for understanding pathogenesis and innate immunity against SARS-CoV-2. In this review, we focus on our present understanding of innate immune responses, inflammasome activation, inflammatory cell death pathways, and cytokine secretion during SARS-CoV, MERS-CoV, and SARS-CoV-2 infection. We also discuss how the pathogenesis of these viruses influences these biological processes.


Subject(s)
COVID-19/immunology , Cell Death/immunology , Cytokines/immunology , Immunity, Innate/immunology , Inflammasomes/immunology , SARS-CoV-2/immunology , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL